Two New Eudesmanoildes from Sonchus transcaspicus

Yi Feng HAN, Xin LI, Kun GAO*, Zhong Jian JIA*

State Key Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new sesquiterpene lactone glycosides were isolated from the whole plant of *Sonchus transcaspicus*. Their structures were elucidated as 1β -O- β -D-glucopyranosy-5 α , 6β H-eudesma-3-en-12, 6α -olide and 1β -O- β -D-glucopyranosy-15-O-(*p*-hydroxylphenylacetate)-5 α , 6β H-eudesma-3, 11(13)-dien-12, 6α -olide by spectral methods (HRMS, 1D and 2D NMR).

Keywords: Sonchus transcaspicus, Compositae, eudesmanolide, sesquiterpene lactone glycosides.

Most plants of the *Sonchus* species have long been used as folk medicine in China, because they are efficacious for the treatment of fever, inflammation, stasis, *etc*, apart from functions such as detoxication, mobilization of blood circulation¹. The chemical constituents of the *Sonchus transcaspicus* were not reported until now. Here we report the structural elucidation of two new sesquiterpene lactone glycosides.

Compound 1, colorless gum, $[\alpha]_D^{20}$ +9.0 (*c* 0.4, Me₂CO). HRMS of 1 revealed $[M+Na]^+$ at *m/z* 435.1995, corresponding to the molecular formula $C_{21}H_{32}O_8$ (calcd 435.1989). In its NMR spectra (**Table 1**), typical signals for a β -D-glucopyranoside were readily recognized, which was confirmed by PC after acid hydrolysis of 1 [*Rf* =0.70, EtOAc-Pyridine-H₂O (2:1:5); 1 (5 mg) in aqueous H₂SO₄ (2 mol/L, 3 mL) and toluene (3

Figure 1 The structures of compounds 1 and 2

^{*} E-mail: jiazj@lzu.edu.cn, miaozm@lzu.edu.cn

Yi Feng HAN et al.

mL) was gently heated under reflux for 3h]. The ¹H and ¹³C NMR spectra of **1** indicated the presence of one >C=CH- group, two >CH(-O-)- units, one CH₃-CH< unit and an ester carbonyl group. Further ¹H-¹H COSY experiment revealed two partial structures of compound **1**: -CH(-O-)-CH₂-CH= and -CH₂-CH₂-CH-CH(-O-)-CH<. The C-C interconnectivity of all the fragments was established through cross peaks in HMBC experiment (see **Figure 2**). The remaining signals of the aglycone were similar to those of the known eudesmanoilde, 11 α , 13-dihydrosantamarin². The attachment of glucose to the hydroxyl at C-1 is deduced from the long range coupling between H-1' and C-1 in the HMBC spectrum. The large coupling constants of H-1 with H-2 ($J_{1\alpha, 2\beta} = 9.6$ Hz), H-6 with H-5 ($J_{6\beta, 5\alpha} = 11.1$ Hz) and H-6 with H-7 ($J_{6\beta, 7\alpha} = 11.1$ Hz) showed that the H-1 was α -orientation and the lactone group at C-6 and C-7 was *trans*-fused. The signal at $\delta_{\rm C}$ 12.5 (C-13) in the ¹³C NMR spectrum (**Table 1**) was a typical value in eudesmanoildes with α -Me groups at C-11³, which had been further confirmed by the cross peaks of H-13 with H-7 α and H-9 α in the NOESY spectrum. The structure of the eudesmanoilde glucoside was thus assigned to be **1**.

Compound 2, yellow gum, $\left[\alpha\right]_{D}^{20}$ +81.0 (c 0.5, MeOH). The FABMS displayed a quasi-molecular ion peak at m/z 583 [M+Na]⁺, 567 [M+Li]⁺, and a prominent fragment ion peak at m/z 421 [M+Na-162]⁺ due to the loss of sugar moiety. In combination with the NMR spectra (Table 1), the molecular formula of 2 was determined to be $C_{29}H_{36}O_{11}$. Its IR spectrum revealed the absorptions of hydroxyl group (3410.5 cm⁻¹), α -methylene- γ -lactone group (1757.6, 1615.6 cm⁻¹) and a benzyl group (1600.1, 1517.1, 1449.2 cm⁻¹). The ¹³C and DEPT NMR spectra of **2** clearly exhibited 29 carbon signals $(1 \times CH_3, 7 \times CH_2, 14 \times CH, 5 \times C, 2 \times CO)$. The ¹H and ¹³C NMR of **2** indicated the presence of *p*-hydroxylphenylacetate moiety⁴. The remaining partial NMR signals of 2were similar to those of 1 except that the methyl γ -lactone group ($\delta_{\rm H}$ 2.43dq, $\delta_{\rm C}$ 39.2, CH; $\delta_{\rm C}$ 179.6, $\delta_{\rm H}$ 1.06d, $\delta_{\rm C}$ 12.5, CH₃) in **1** was replaced by methylene- γ -lactone group ($\delta_{\rm C}$ 139.5, C; δ_C 170.6, δ_H 5.88, 5.45, brs, δ_C 117.4, CH₂). Its HMBC spectrum show the cross-peaks from H-15 ($\delta_{\rm H}$ 4.42, dd) and H-7" ($\delta_{\rm H}$ 3.46, brs) to the ester carbon ($\delta_{\rm C}$ 171.4), which indicated that *p*-hydroxylphenylacetate was located at the C-15. So the structure of 2 was identified as 1β-O-β-D-glucopyranosy-15-O-(p-hydroxylphenylacetate)-5a, 6BH-eudesma -3, 11(13)-dien-12, 6a-olide.

NO	$\delta_{\rm H} (\alpha/\beta, J \text{ in Hz})$	$\delta_{\rm C}$ (DEPT)	$\delta_{\rm H} (\alpha/\beta, J \text{ in Hz})$	δ_{C} (DEPT)
	1		2	
1	3.67 (dd, 6.3, 9.6)	78.8 (CH)	3.69 (dd, 6.6, 9.3)	78.8 (CH)
2	2.38 (dd, 6.3, 17.5)/1.91 (dd,	29.2 (CH ₂)	2.49 (dd, 6.6, 17.5,)/1.90	29.6 (CH ₂)
	9.6, 17.5)		(dd, 9.3, 17.5)	
3	5.34 (brs)	121.5 (CH)	5.67 (brs)	127.9 (CH)
4		133.3 (C)		131.9 (C)
5	2.21 (d, 11.1)	50.3 (CH)	2.40 (d, 11.4)	49.2 (CH)
6	4.05 (t, 11.1)	80.8 (CH)	3.46 (t, 11.4)	80.7 (CH)
7	1.52 (dddd, 11.1, 4, 13, 7.5)	53.0 (CH)	2.40 (dddd, 11.4, 4, 13, 2.7)	50.3 (CH)
8	1.55 (ddd, 4, 13, 3)/1.48 (dd, 4,	22.3 (CH ₂)	1.90(ddd, 4, 13, 3)/1.36 (dd,	21.2 (CH ₂)
	13)		4, 13)	
9	1.22 (dd, 4, 13)/1.91 (ddd, 4,	34.5 (CH ₂)	1.90 (dd, 4, 13)/1.36(ddd, 4,	34.5 (CH ₂)
	13, 3)		13, 3)	
10		40.1 (C)		40.3 (C)
11	2.43 (dq, 7.5, 6.6)	39.2 (CH)		139.5 (C)
12		179.6 (C)		170.6 (C)
13	1.06 (d, 6.6)	12.5 (CH ₃)	5.88, 5.45 (brs)	117.4 (CH ₂)
14	0.84 (s)	12.2 (CH ₃)	0.68 (s)	12.4 (CH ₃)
15	1.71 (s)	23.4 (CH ₃)	4.42 (dd, 12.0, 6.3)	67.4 (CH ₂)
1'	4.16 (d, 7.8)	100.1 (CH)	4.16 (d, 7.5)	100.5 (CH)
2'	2.89 (dd, 8.2, 7.8)	73.8 (CH)	2.89 (dd, 8.2, 7.5)	74.2 (CH)
3'	3.04 (dd, 8.8, 8.2)	77.2 (CH)	3.05 (dd, 8.8, 8.2)	77.5 (CH)
4'	3.40 (dd, 8.7, 8.8)	70.6 (CH)	3.39 (dd, 8.7, 8.8)	70.9 (CH)
5'	4.35 (ddd, 8.7, 2, 5.7)	77.2 (CH)	4.40 (ddd, 8.7, 2, 5.7)	77.5 (CH)
6'	3.65 (dd, 2, 11.8)/3.40 (dd, 5.7,	61.6 (CH ₂)	3.67 (dd, 2, 11.8)/3.46 (dd,	61.9 (CH ₂)
	11.8)		5.7, 11.8)	
1"				125.1 (C)
2"			6.94 (d, 8.1)	131.0 (CH)
3"			6.59 (d, 8.1)	115.8 (CH)
4"				156.7 (C)
5"			6.59 (d, 8.1)	115.8 (CH)
6"			6.94 (d, 8.1)	131.0 (CH)
7"			3.46 (brs)	40.6 (CH ₂)
8"				171.4(C)
OH			9.27(brs)	

Table 1 1 H (300MHz), 13 C NMR (75MHz) and DEPT data of 1 and 2 (DMSO, TMS, δ ppm)

Acknowledgments

This work was supported by the NNSFC (No. 20372029 and No. 20021001- QT Program).

References

- 1. Jiangsu New Medical College, A Dictionary of the Traditional Chinese Medicines, Shanghai Science and technology Press, Shanghai, 1976, p.1286.
- 2. J. F. Sanz, G. Casieuano, J. A. Marco, Phytochemistry, 1990, 29(2), 541.
- G. P. Moss, P. S. Pregosin, E. W. Randall, *J. Chem. Soc. Perkin I*, **1974**, 1525.
 T. Miyase, S. Fukushima, *Chem. Pharm. Bull.*, **1987**, *35*, 2869.

Received 7 April, 2004